3.632 \(\int \frac {(a B+b B \cos (c+d x)) \sqrt {\sec (c+d x)}}{(a+b \cos (c+d x))^{3/2}} \, dx\)

Optimal. Leaf size=130 \[ \frac {2 B \sqrt {a+b} \sqrt {\cos (c+d x)} \csc (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} F\left (\sin ^{-1}\left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right )}{a d \sqrt {\sec (c+d x)}} \]

[Out]

2*B*csc(d*x+c)*EllipticF((a+b*cos(d*x+c))^(1/2)/(a+b)^(1/2)/cos(d*x+c)^(1/2),((-a-b)/(a-b))^(1/2))*(a+b)^(1/2)
*cos(d*x+c)^(1/2)*(a*(1-sec(d*x+c))/(a+b))^(1/2)*(a*(1+sec(d*x+c))/(a-b))^(1/2)/a/d/sec(d*x+c)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.16, antiderivative size = 130, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 38, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.079, Rules used = {21, 4222, 2816} \[ \frac {2 B \sqrt {a+b} \sqrt {\cos (c+d x)} \csc (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} F\left (\sin ^{-1}\left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right )}{a d \sqrt {\sec (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Int[((a*B + b*B*Cos[c + d*x])*Sqrt[Sec[c + d*x]])/(a + b*Cos[c + d*x])^(3/2),x]

[Out]

(2*Sqrt[a + b]*B*Sqrt[Cos[c + d*x]]*Csc[c + d*x]*EllipticF[ArcSin[Sqrt[a + b*Cos[c + d*x]]/(Sqrt[a + b]*Sqrt[C
os[c + d*x]])], -((a + b)/(a - b))]*Sqrt[(a*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[(a*(1 + Sec[c + d*x]))/(a - b)])
/(a*d*Sqrt[Sec[c + d*x]])

Rule 21

Int[(u_.)*((a_) + (b_.)*(v_))^(m_.)*((c_) + (d_.)*(v_))^(n_.), x_Symbol] :> Dist[(b/d)^m, Int[u*(c + d*v)^(m +
 n), x], x] /; FreeQ[{a, b, c, d, n}, x] && EqQ[b*c - a*d, 0] && IntegerQ[m] && ( !IntegerQ[n] || SimplerQ[c +
 d*x, a + b*x])

Rule 2816

Int[1/(Sqrt[(d_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp[(-2*
Tan[e + f*x]*Rt[(a + b)/d, 2]*Sqrt[(a*(1 - Csc[e + f*x]))/(a + b)]*Sqrt[(a*(1 + Csc[e + f*x]))/(a - b)]*Ellipt
icF[ArcSin[Sqrt[a + b*Sin[e + f*x]]/(Sqrt[d*Sin[e + f*x]]*Rt[(a + b)/d, 2])], -((a + b)/(a - b))])/(a*f), x] /
; FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0] && PosQ[(a + b)/d]

Rule 4222

Int[(csc[(a_.) + (b_.)*(x_)]*(c_.))^(m_.)*(u_), x_Symbol] :> Dist[(c*Csc[a + b*x])^m*(c*Sin[a + b*x])^m, Int[A
ctivateTrig[u]/(c*Sin[a + b*x])^m, x], x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownSineIntegrandQ[u,
 x]

Rubi steps

\begin {align*} \int \frac {(a B+b B \cos (c+d x)) \sqrt {\sec (c+d x)}}{(a+b \cos (c+d x))^{3/2}} \, dx &=B \int \frac {\sqrt {\sec (c+d x)}}{\sqrt {a+b \cos (c+d x)}} \, dx\\ &=\left (B \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}} \, dx\\ &=\frac {2 \sqrt {a+b} B \sqrt {\cos (c+d x)} \csc (c+d x) F\left (\sin ^{-1}\left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{a d \sqrt {\sec (c+d x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.15, size = 104, normalized size = 0.80 \[ \frac {2 B \sqrt {\frac {a+b \cos (c+d x)}{(a+b) (\cos (c+d x)+1)}} F\left (\sin ^{-1}\left (\tan \left (\frac {1}{2} (c+d x)\right )\right )|\frac {b-a}{a+b}\right )}{d \sqrt {\frac {\cos (c+d x)}{\cos (c+d x)+1}} \sqrt {\sec (c+d x)} \sqrt {a+b \cos (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[((a*B + b*B*Cos[c + d*x])*Sqrt[Sec[c + d*x]])/(a + b*Cos[c + d*x])^(3/2),x]

[Out]

(2*B*Sqrt[(a + b*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))]*EllipticF[ArcSin[Tan[(c + d*x)/2]], (-a + b)/(a +
 b)])/(d*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*Sqrt[a + b*Cos[c + d*x]]*Sqrt[Sec[c + d*x]])

________________________________________________________________________________________

fricas [F]  time = 0.64, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {B \sqrt {\sec \left (d x + c\right )}}{\sqrt {b \cos \left (d x + c\right ) + a}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*B+b*B*cos(d*x+c))*sec(d*x+c)^(1/2)/(a+b*cos(d*x+c))^(3/2),x, algorithm="fricas")

[Out]

integral(B*sqrt(sec(d*x + c))/sqrt(b*cos(d*x + c) + a), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (B b \cos \left (d x + c\right ) + B a\right )} \sqrt {\sec \left (d x + c\right )}}{{\left (b \cos \left (d x + c\right ) + a\right )}^{\frac {3}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*B+b*B*cos(d*x+c))*sec(d*x+c)^(1/2)/(a+b*cos(d*x+c))^(3/2),x, algorithm="giac")

[Out]

integrate((B*b*cos(d*x + c) + B*a)*sqrt(sec(d*x + c))/(b*cos(d*x + c) + a)^(3/2), x)

________________________________________________________________________________________

maple [A]  time = 0.32, size = 126, normalized size = 0.97 \[ \frac {2 B \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sqrt {\frac {a +b \cos \left (d x +c \right )}{\left (1+\cos \left (d x +c \right )\right ) \left (a +b \right )}}\, \EllipticF \left (\frac {-1+\cos \left (d x +c \right )}{\sin \left (d x +c \right )}, \sqrt {-\frac {a -b}{a +b}}\right ) \sqrt {\frac {1}{\cos \left (d x +c \right )}}\, \left (\sin ^{2}\left (d x +c \right )\right )}{d \sqrt {a +b \cos \left (d x +c \right )}\, \left (-1+\cos \left (d x +c \right )\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a*B+b*B*cos(d*x+c))*sec(d*x+c)^(1/2)/(a+b*cos(d*x+c))^(3/2),x)

[Out]

2*B/d*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+b*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticF((-1+cos(d*x+c)
)/sin(d*x+c),(-(a-b)/(a+b))^(1/2))/(a+b*cos(d*x+c))^(1/2)*(1/cos(d*x+c))^(1/2)*sin(d*x+c)^2/(-1+cos(d*x+c))

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (B b \cos \left (d x + c\right ) + B a\right )} \sqrt {\sec \left (d x + c\right )}}{{\left (b \cos \left (d x + c\right ) + a\right )}^{\frac {3}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*B+b*B*cos(d*x+c))*sec(d*x+c)^(1/2)/(a+b*cos(d*x+c))^(3/2),x, algorithm="maxima")

[Out]

integrate((B*b*cos(d*x + c) + B*a)*sqrt(sec(d*x + c))/(b*cos(d*x + c) + a)^(3/2), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {\sqrt {\frac {1}{\cos \left (c+d\,x\right )}}\,\left (B\,a+B\,b\,\cos \left (c+d\,x\right )\right )}{{\left (a+b\,\cos \left (c+d\,x\right )\right )}^{3/2}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((1/cos(c + d*x))^(1/2)*(B*a + B*b*cos(c + d*x)))/(a + b*cos(c + d*x))^(3/2),x)

[Out]

int(((1/cos(c + d*x))^(1/2)*(B*a + B*b*cos(c + d*x)))/(a + b*cos(c + d*x))^(3/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ B \int \frac {\sqrt {\sec {\left (c + d x \right )}}}{\sqrt {a + b \cos {\left (c + d x \right )}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*B+b*B*cos(d*x+c))*sec(d*x+c)**(1/2)/(a+b*cos(d*x+c))**(3/2),x)

[Out]

B*Integral(sqrt(sec(c + d*x))/sqrt(a + b*cos(c + d*x)), x)

________________________________________________________________________________________